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Modern evolutionary theory predicts that integrated phenotypes, including
interacting fitness-related complex traits such as behaviour, physiology
and morphology, jointly influence animal performance. However, studies
have examined these aspects of biology independently in relation to
fitness. We investigated how phenotypic characteristics collectively affect
overwinter survival in a wild population of yellow-necked mice. We
measured behavioural activity, basal metabolic rate and body mass in
late autumn, released marked mice and recaptured survivors in spring
to reassess their phenotypes. Mice grew, increased metabolic rate and
decreased distance moved over the winter, but when those changes were
accounted for, the phenotypes were intra-individually consistent. The
simultaneous selective advantages of elevated metabolism and behavioural
activity during autumn suggest that the interplay between physiology and
behaviour is subject to selection. Despite the lack of significant phenotypic
covariation between metabolic rate and behaviour, their additive survival
benefits suggest that elevated activity facilitates the development of
costly metabolism in free-ranging animals. As metabolism and body mass
share 84% of the common variance, we hypothesized that selectively
advantageous high metabolism supports overwinter growth. The results
support postulates that the behaviour–physiological phenotype is the first
line of selective responses and that plasticity is an important source of
variation in individuals’ performance.

1. Introduction
Fitness-related traits, such as behaviour, metabolism and size, often co-
express, yet they are frequently studied in isolation [1]. This is adverse
to the integrated phenotype concept of modern evolutionary theory [1,2],
hindering our understanding of adaptive mechanisms and the contribution of
traits to fitness [1]. For example, metabolic allometries [3] are optimized and
constrained through the coevolution of growth rate and energy processing,
which interactively influence individual fitness components, such as survival
and reproduction [1,4].

The relationship between energetics and fitness can be understood through
two opposing yet not mutually exclusive hypotheses: allocation and perform-
ance [5–7]. For instance, certain activity-related behaviours can be viewed
as costly functions shaped by energy allocation principles or as components
of energy performance mechanisms that enhance resource acquisition [5,8].
Consistent individual differences in behaviours and animal personalities are
thought to arise from evolutionary trade-offs among various life-history
strategies [9]. For example, proactivity, in contrast to reactivity, is predicted
to enhance current reproduction but may compromise survival, longevity and
future reproduction [9]. However, there has yet to be evidence supporting
the idea that proactivity, or any other behavioural trait, consistently impacts
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fitness, such as survival [10,11]. This lack of consistency may be attributed to interdependence among phenotypic traits, as
predicted by the pace-of-life syndrome hypothesis [12]. The hypothesis suggests that fitness consequences associated with
animal personalities interplay with, or are mediated by, other functions [12], like energy metabolism ([13]; example in [14]).

Some of the previous inconsistent results of the metabolism–fitness [1] and behaviour–physiology associations [15] might
have emerged from the common practice of statistical correction of metabolism for variation in size (i.e. allometry). Such
manipulation might result in the removal of a significant part of the mechanistically important variation in metabolic rate [3,16].
Effectively, those studies assumed the size, e.g. body mass, as an independent variable and metabolism as unidirectionally
dependent on size when considering fitness effects [17]. It is somewhat in opposition to theoretical predictions and empirical
knowledge: body mass and metabolic rate coevolve [1,4,18], and body mass is a product of growth rate that depends on the
rate of energy acquisition, transformation and allocation [3]. Therefore, studies on size-corrected metabolism might miss the
essential components of fitness-related variance linked to coevolution among the correlated organismal (e.g. growth) functions.
It may lead to incorrect conclusions where fitness is attributed to variation in size, while it might be (at least partially) a product
of variance in bioenergetics.

Only two studies, so far, have considered the fitness of behaviour–physiology co-expression, and only in a single cold-bloo-
ded species [19,20]. Here, we fill this gap by testing whether the integrated phenotype affects individual fitness in wild
warm-blooded species. We focus on basal metabolic rate (BMR) as a measure of maintenance metabolism in endotherms
because this trait links to many aspects of animal performance (exercise metabolism [21], growth [22], behaviour [23] and spatial
ecology [24]) and as such can lead to many energetic and life-history trade-offs [25]. The ‘compensatory’ hypothesis predicts
that individuals with a low maintenance metabolism can survive better on fewer resources and can allocate more to growth and
reproduction [26,27]. By contrast, the ‘increased intake’ hypothesis predicts that animals with a high maintenance metabolism,
reflecting more efficient metabolic machinery, can assimilate more energy to invest in fitness [28,29]. We examined whether
the survival component of fitness in wild yellow-necked mice (Apodemus flavicollis (Melchior, 1834)) is related to maintenance
metabolism and/or size. By doing so, we advocate for phenotypic tests of individual fitness that rely less on assumptions
and are, therefore, less restrictive. To distinguish between morphological and physiological sources of fitness relatedness and
to avoid assumptions about the directionality of the size–metabolism relationship, we tested whether selection operates on
residual metabolic rate, independent of the animals’ size or on size-predicted whole-body metabolism. Finally, we tested
whether the selection mechanism occurs independently or along with selection on consistent activity behaviour, testing between
allocation and performance mechanisms.

2. Methods
(a) Study system
We studied a wild population of the yellow-necked field mouse from the old-growth Białowieża Natural Forest (52.45′ N
23.46′ E). In autumn (16 November–8 December 2022), 25 females and 23 males, all subadults (born in the preceding summer;
determined by body mass and degree of abrasion of scales on tail [30]), were captured in 1 ha (10 × 10 m) grid of 121 points
(two traps per point). To ensure a high recapture rate during the following spring, we run 12 day-long trapping sessions (26–31
March and 25–30 April 2023) on an extended grid with two added lines on each side (resulting in approx. 2 ha grid of 225
points with 450 traps). Trapped mice (with wooden traps baited with carrot, oat and sunflower seed) were transported to a
laboratory at the Mammal Research Institute of the Polish Academy of Sciences (Białowieża, Poland), approximately 10 km
apart. Mice were individually marked with transponders (IPTT-300; Biomedic Data Systems Inc.) and weighed to the nearest
0.1 g (ScoutPro 200; Ohaus) under a 2% mixture of isoflurane (Iso-Vet) anaesthesia. Animals were kept in the walk-in climatic
chamber (16 ± 2°C, natural photoperiod) in individual cages (Techniplast 1264), supplemented with shelter (plastic tube) and
wood chip bedding. We provided water and food (apples and rodent food; Versele-Laga, Deinze, Belgium) ad libitum. After the
experimental procedures, the animals were released at capture locations. Experimental procedures were approved by the Local
Committee for Ethics in Animal Research in Olsztyn, Poland (decision no. 67/2020).

(b) Activity behaviour
The intensity of mice activity was quantified using an open-field test (OFT) in an arena (1 × 1 × 1 m, made of white PVC,
illuminated with four 4.8 W, 470 lm lightbulbs) during a day following capture. The arena was cleaned with 70% ethanol
between trials. Animals were tested individually by relocating to a corner of the arena inside their home cage shelter (plastic
tube). Once the animal entered the arena, the tube was removed. If the animal did not enter the arena voluntarily, it was placed
in the arena corner. Individuals were allowed to explore the arena for 5 min, remotely observed and recorded from outside
of the behavioural room (with a Hero 5 GoPro Inc. camera). We assessed the total distance moved during OFT automatically
(in the Animal Tracker plugin, ImageJ [31]) and defined activity behaviour as the distance covered, divided by the time of
movements, subtracting time when animals were immobile (i.e. freezing behaviour; see the electronic supplementary material).
This standard marker of activity behaviour [32] was found to be repeatable in our mice population [33].
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(c) Maintenance metabolism
Metabolic rate was measured a day after OFT using indirect calorimetry in an open-flow respirometry system designed to
measure six animals simultaneously. Metabolic rate was measured on post-absorptive animals (during daytime, ≥6 h after last
possible consumption of food) resting in thermoneutral temperature (30°C [34]) in individual glass chambers (300 ml) during
4 h long trials. Incurrent flow rates (approx. 200 ml min−1 dried with silica gel) were measured continuously (FlowBar-8; Sable
Systems International; henceforth SSI). Excurrent air from animal chambers was sampled (with flow 80 ml min−1) sequentially
(multiplexer, Sable System) between six animals and two control lines to measure oxygen concentration in two analysers (FC10,
SSI). Air from each flow line was sampled 24 times for 140 s every 10 min. Metabolic rate was calculated as the average of the
last 20 s readings of each sample of VO2 (eqn (10.2) [35]), assuming a 0.8 respiratory exchange ratio. BMR was defined as the
average of the three lowest 20 s means obtained for individual mice.

(d) Statistical analyses
To test the intraindividual consistency of phenotypes, we estimated intraclass correlation coefficients for sex-standardized
(subtracted from the male or female population mean and divided by the male or female population standard deviation)
values of body mass (mb), BMR, residual metabolism (adjusted for mass, rBMR) and activity behaviour (AB) using the ‘irr’ R
package. To account for the allometric nature of metabolic scaling, rBMR was calculated as residuals from ordinary least square
regression between log10-transformed BMR and log10-transformed mb [36]. Phenotypic correlations between sex-standardized
values of mb and BMR, rBMR and AB measured in autumn were obtained as Pearson product–moment correlations using the
‘stats’ R package.

Overwinter survival was measured as a binary predictor, presence–absence, in the spring grid of autumn phenotyped mice.
Thus, the analysis assumed that unrecaptured mice in the following spring did not survive the winter. To test the strength and
direction of survival selection on studied phenotypes, we used logistic regression with logit-link function in generalized linear
models (GLM) of the ‘stats’ R-package. We applied a stepwise algorithm for trait selection for the final model interpretation
using the ‘MASS’ R package. Overwinter survival was included as a binary response (1 or 0) variable, and sex-standardized
autumn mb, BMR, rBMR and AB obtained in autumn were included as explanatory covariates. The variables for the final model
were forward selected using the Akaike Information Criterion (AIC) in a stepwise algorithm with the function ‘stepAIC’. The
∆AIC of ≥ 2 for a candidate variable was assumed as a significant improvement for further model steps when compared with a
previous one (as well as to other candidate variables within a given step). Selection gradients were calculated using the linear
model on standardized variables and relative survival, following Lande & Arnold [37]. All statistics were calculated in R (v.
4.3.1).

3. Results
(a) Population, variation and covariation
In total, we captured 48 and 31 individuals in autumn and spring, respectively. Thirteen individuals marked in autumn
were recaptured in spring (27% survived). During the spring session, no autumn-marked individuals were recaptured in
the additional lines, suggesting that animals remained in their autumn home ranges (but long-distance dispersion cannot be

A B

Figure 1. (A) Relationship between basal metabolic rate and body mass in female (circle) and male (triangle) mice measured in autumn. The homogeneity of slopes in
males and females was compared using analysis of covariance. (B) Relationship between probability of survival (1, survive; 0, no survival) in winter and maintenance
metabolism (standardized basal metabolic rate) and activity behaviour (standardized distance moved during activity) measured in autumn.
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excluded). All of the mice phenotyped in autumn were recaptured during the first four nights of the March session (six males
and seven females). Body mass, BMR (but not rBMR) and AB consistently differed among individuals when adjusted for the
population-level temporal variation (table 1). Body mass and BMR were highly correlated (r = 0.84 (95%CI: 0.74,0.91), p < 0.001),
and mb considered as a predictor explained 80% of the variation in BMR (r2 = 0.80, t = 13.53, p < 0.001; figure 1A). Neither mb nor
BMR or rBMR correlated significantly with AB (table 2).

(b) Survival selection
Mortality during winter did not differ between males (74%) and females (72%; χ2 = 0.01, p = 0.91). Two-step analysis resulted
in a model that included BMR and AB. Still, it did not indicate mb or rBMR as significant predictors explaining variation in the
overwinter survival of mice (table 3). According to this model, the overwinter survival was positively correlated with both BMR
(β [s.e.] = 0.59 [0.22], α = 0.97 [0.41], z = 2.35, p = 0.019) and AB (β = 0.52 [0.22], α = 0.86 [0.42], z = 2.06, p = 0.039; figure 1B).

4. Discussion
In our study, variation in the level of activity and metabolism of individuals were the primary predictors of animal overwinter
survival, assuming plausible emigration as insignificantly impacting our main conclusions. Mice that were more active and
had higher whole-body metabolism survived better than those that were less active and had lower metabolism (table 3 and
figure 1B). In contrast, neither body size nor size-corrected residual metabolism was the main predictor of the mice’s overwinter
survival in this population (table 3).

The high autumn body mass in wild animals is usually associated with their chances of surviving winter, sometimes
saliently assuming some unmeasured physiological properties (e.g. rates of growth and fat accumulation) [38–42]. Despite, as
predicted in the metabolic theory of ecology, the BMR scales as an exponent of body mass (in mammals: 0.46–0.78 [43,44]; in
our study: 0.55), studies on body size effects on survival rarely directly refer to the associated variation in metabolism, and if
they do, they consider its residual variance only [40,45–47]. The previous studies indicate a strong positive genetic covariation
between body mass and whole-body metabolism, suggesting that individuals’ energy expenditures can quickly change through
coevolution between mass and metabolism [48,49] (see also [18]). Thus, statistical separation of phenotypic variance solely
attributed to metabolism from that solely attributed to body mass might not be possible [3,16]. Instead, attempting that
separation might yield bias, e.g. when natural selection acts simultaneously on both size and metabolism or on metabolism
and associated growth rate. Some studies showed that residual variation in metabolism could undergo stabilizing selection
[45,50–53], suggesting that the selection acts on body mass-predicted metabolism or size-metabolism co-expression. The use
of residual variation of metabolism, accounting for body mass, is motivated by an argument that the body composition of
metabolically active organs explains the residual variance in metabolism [54]. However, organ size explains rather a minor
portion of individuals’ variance in residual basal metabolism, and those estimates were rather inconsistent among experiments
and study systems [54–60] (but see [22,61]). Consequently, statistically correcting for variation in size may not be the most
optimal, as it might remove important sources of mechanistic variation [3], resulting in residuals referring only to partial
variance in metabolic rate.

Most of the studies in the field of fitness–phenotype relation refer to the BMR of adult, non-growing, non-reproducing and
non-performing animals. At the same time, natural selection operates on animal metabolism, associated with growth [40,51],
reproduction [46,53] and ageing [62]. Survivor mice here increased body mass by approximately 20% (table 1), confirming
overwinter growth [63], suggesting that the minimum metabolic rate we measured was likely associated with additional costs
related to growth [40,51]. In our previous study, the maintenance metabolism of subadult yellow-necked mice measured in
autumn predicted their growth until the middle of the winter [63]. Thus, survival selection on metabolism detected here might
actually promote development under challenging winter conditions, where metabolic machinery supports energy transforma-
tion and assimilation, concordant with the ‘increase-intake’ hypothesis [64]. Metabolic traits are strongly genetically linked
with growth-related characteristics [65]. For example, an experiment on laboratory mice showed that selection for high basal
metabolism resulted in a correlated response in increased growth rate and likely associated intestinal length [22]. Thus, growth
rate and adult body size can depend on metabolism (essential for energy assimilation) onset as the maintenance cost of early
postembryonic development [66].

As growth depends on a continuous energy supply, selection promoting expensive metabolic machinery and supporting
fast growth is possible only when energy acquisition is facilitated by behaviour. Likely, due to this limitation, fast-growing
chipmunks were the least likely to survive [51], and growing squirrels with high metabolism but little food hoards were
eliminated from the population [40]. Yet, simultaneous effects of maintenance metabolism and consistent individual differences
in behaviour on survival [19,20] have been studied only in the ectothermic model so far, which fundamentally differ in
energetic requirements from endotherms (e.g. endotherms have several times lower maintenance metabolism [67]). In the
study on lizards, metabolism and behaviour were independent and suggested alternative mechanisms to improve growth rate
and survival by either low energy expenditure and high exploration or high energy expenditure and low exploration [19].
However, the lizards with a high metabolism and low exploration grew faster and tended to survive better than those with a
low metabolism and high exploration [19]. In our experiment, overwinter mice survivors were not only characterized by high
metabolism (and associated size) but they were also the most active individuals. Activity behaviour can improve individuals’
exploration of space, aiding food detection and acquisition capabilities [5,8] (see for our mice species [68]). From this perspec-
tive, our study suggests the operation of the performance mechanisms, where fast-growing mice with high metabolism and
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high activity levels survive better to the following breeding season. While the breeding success of surviving individuals was
not assessed directly, the observed high metabolism may correlate with increased reproductive success, as demonstrated in
laboratory mice [69,70]. This possibility remains to be tested for our study animal (but see [71]). This, together with our survival
results, indicates that the ‘increase-intake’ model for the evolution of a high level of basal energy metabolism in wild animals is
a realistic scenario, but only when accompanied by high behavioural performance [5].

Table 1. Variation and repeatability (ICC, intraclass correlation coefficients) for body size (mb, body mass), whole-body (BMR) and adjusted for mb residual (rBMR)
maintenance metabolism (basal metabolic rate) and activity behaviour (AB, distance moved per time of activity). Agreement refers to the degree of absolute
agreement among individual measurements, while consistency refers to systematic differences between individual measurements. CV, coefficient of variation; CI,
confidence intervals; a, in autumn; s, in spring. Tests of differences between seasons: ns, not significant, *<0.05, **M < 0.01, ***<0.001.

trait mean range CV agreement consistency

ICC [95% CI] p ICC [95% CI] p

mb (g) 35.0 (a: 31.5, s: 38.5)*** a: 25.1–38.1

s: 31.9–50.2

16.96 0.22 [−0.09,0.63] 0.167 0.58 [0.07,0.85] 0.015

BMR (ml min−1) 1.05 (a: 0.96, s: 1.14)*** a: 0.85–1.18
s: 0.93–1.29

12.47 0.18 [−0.07,0.57] 0.187 0.56 [0.04,0.84] 0.018

rBMR (ml min−1) 0.00 (a: −0.02 s: 0.02)ns a: −0.05–0.03
s: −0.03–0.05

6.49 −0.07 [−0.48,0.45] 0.603 −0.08 [−0.59,0.48] 0.602

AB (m min−1) 12.35 (a: 13.90, s:
10.80)**

a: 9.32–18.63
s: 5.66–16.30

25.12 0.27 [−0.13,0.67] 0.124 0.47 [−0.08,0.80] 0.045

Table 2. Phenotypic correlations (r) between body size (mb, body mass), whole animal (BMR) and adjusted for mb residual (rBMR) maintenance metabolism (basal
metabolic rate) and activity behaviour (AB, distance moved per time of activity) in mice captured in autumn, separately for mice that survived or not the winter. The
homogeneity of slopes (S-H) between survivors and non-survivors was compared using analysis of covariance, assuming metabolism or mb as predictors and behaviour
as the dependent variable. CI, confidence intervals.

traits all animals, n = 48 survivors, n = 13 non-survivors, n = 35 S-H

r [95% CI] p r [95% CI] p r [95% CI] p p

AB~mb 0.03 [−0.26,0.31] 0.863 0.12 [−0.46,0.63] 0.694 −0.19 [−0.50,0.15] 0.265 0.370

AB~BMR 0.11 [−0.18,0.39] 0.442 0.35 [−0.25,0.76] 0.236 −0.18 [−0.49,0.16] 0.298 0.095

AB~rBMR 0.11 [−0.18,0.38] 0.466 0.28 [−0.32,0.72] 0.357 −0.05 [−0.38,0.29] 0.783 0.293

Table 3. Results of stepwise model components selection for logistic regression with logit-link function explaining variation in overwinter survival. Body size (mb, body
mass), whole-body (BMR) and adjusted for mb residual (rBMR) maintenance metabolism (basal metabolic rate) and activity behaviour (AB, distance moved per time of
activity) were included as candidate explanatory variables. Stepwise best components and the final model are represented in bold.

step/explanatory variable AIC

survival~1 (step 0) 58.1

+BMR 52.4

+AB 54.0

+mb 54.4

+rBMR 58.3

survival~BMR (step 1) 52.4

+AB 49.4

+mb 54.4

+rBMR 54.4

survival~BMR+ AB (step 2) 49.4
+mb 51.0

+rBMR 51.3
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5. Conclusion
Our study indicates that the survival component of individual fitness links to whole metabolism rather than to mass-specific
metabolism, suggesting that strongly correlated body mass evolves in response to selection on metabolism and growth rate.
Our study also showed parallel survival selection between behavioural activity and metabolism, where the benefits of high
activity should aid resource collection needed for physiological growth and maintenance. Despite parallel selective advantages
of behaviour and metabolism, we found no evidence of a consistent phenotypic correlation between activity level and metabolic
rate at the individual level. However, the metabolic rate and behaviour can also be correlated at the within-individual level,
highlighting the significance of poorly studied plasticity mechanisms for phenotype maintenance in the wild [6,72]. Thus, our
results support the operation of the behavioural–metabolic performance model only on the selective and not on the phenotypic
level, suggesting that a high level of plasticity is involved in this phenomenon.
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