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Abstract 

Global warming and degradation of natural habitats are the two main factors caus-

ing ecophysiological stress on individuals and risk for biodiversity. Hyperthermia 

is a common response to stress in homeothermic animals, in particular to heat, 

pathogens and environmental contamination. Resilience of biological systems to 

global warming may be deteriorated in polluted habitats. Here we investigated how 

body temperature of a wild bird, the barn swallow (Hirundo rustica), responded to 

global warming while simultaneously exposed to radioactive contamination from the 

Chernobyl accident. Our results showed that both high air temperatures (t = 15.55, 

df = 335, p < 0.0001) and elevated environmental radioactive contamination (t = 5.18, 

df = 8.09, p = 0.0008) increased internal body temperature of individuals. The additive 

effect suggests that birds might suffer hyperthermia in locally contaminated habitat 

(1.47% body temperature increase) while simultaneously exposed to globally rising 

temperatures (1.95% body temperature increase), potentially reducing the fitness of 

individual and the maintenance of breeding colonies. The cumulative and interactive 

negative effects of multiple stressors, such as those emerging from increasing habitat 

degradation and climate change, will likely contribute to biodiversity losses globally.

Introduction

Global warming is progressing rapidly, affecting processes at different levels of bio-
logical organization [1]. Predicting responses to rising temperatures is essential for 
determining risks for biodiversity. Resilience of biological processes to shifting climate 
is hampered by increasing deterioration of natural habitats [2]. Cumulative effects 
of global warming, habitat degradation, and contamination can be a negative force 
for animal populations [3]. Understanding ecological and physiological mechanisms 
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behind these changes is an essential first step in designing mitigation strategies to 
safeguard biodiversity and ecosystem services.

Climate change, and rising air temperature in particular, affect animal physiological 
performance [4]. High environmental temperatures can impact animal water balance 
and degrade thermoregulation, leading to dehydration and hyperthermia. In extreme 
situations loss in physiological performance due to exposure to heat can lead to fatal-
ities [5]. Evidence of increased mortality in wildlife, domestic animals and humans 
with rising air temperatures has accumulated during recent decades [5,6]. Research 
in the tropics has shown dramatic increases in frequency of massive die-offs during 
heatwaves for birds and bats [7]. But physiological performance is also impaired at 
higher latitudes, e.g., temperate birds showed similar thermoregulatory responses as 
tropical birds, even when exposed to milder temperatures from global warming [8,9]. 
Likewise, acute and chronic heat reduce livestock productivity and quality [10,11], 
and increases the risk of mortality in human populations exposed to increasing global 
temperatures [5], thus indirectly and directly hampering our health and well-being.

Hyperthermia is a common response to heat exposure in animals, especially in 
passerine birds [12]. Facultative hyperthermia, the elevation of body temperature 
above normothermic levels, can help to minimize water loss during heat exposure 
by reducing thermal gradients and allowing non-evaporative heat loss [12]. This 
non-pathological facultative up-regulation of body temperature represents a temporal 
physiological increase in set-point of body temperature regulation [13]. Fever, in con-
trary, is a pathogenic responses to infection with selection benefits [14,15]. Fever can 
be harmful, e.g., for nervous system [16], when it coincides with other causes of body 
temperature up-regulation, by increasing risk of acute hyperthermia, such as when 
febrile animals are exposed to increased air temperatures [3,16]. Although some bird 
species can tolerate body temperatures as high as 46°C (in particular, passerines 
from humid and hot areas; [17]), above that threshold heat injury across tissues and 
organs may cause death. Even small changes in body temperature can affect phys-
iological homeostatic regulation [18]. In such circumstances individuals may suffer 
fitness loss due to mild stress revealing energetic allocation and trade-offs between 
investments into reproduction and thermoregulation, e.g., during development of 
eggs or chicks in birds [19,20].

Physiological responses to pollution, such as to the radioactive contamination 
from nuclear accidents, waste, mining and processing of radioactive ores, and from 
medical procedures, may alter organismal responses to other stressors and patho-
gens [21,22]. Importantly, negative effects of exposure to increasing contamination 
of natural habitats may impair animal resilience to changing climate and global 
warming [3]. In response to ionizing radiation, and other stressors affecting DNA and 
cellular constituents, production of tissue-oriented signals initiate immune and febrile 
responses, resulting in up-regulation of body temperature [16,21]. Wild barn swallows 
(Hirudo rustica) exposed to increased levels of ionizing radiation from the Chernobyl 
accident showing increased body temperature, when compared to birds from uncon-
taminated habitats [23]. Exact mechanisms of this observation are unknown, but 
may involve heat generation and dissipation, as well as energetics of mobility and 
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maintenance processes, potentially leading to overheating and fitness loss when exposed to rising air temperatures. In 
this study we investigate how barn swallow physiological performance is affected by the interplay between habitat contam-
ination from the Chernobyl accident and global warming. We analyzed a large data set of wild animal core body tempera-
tures collected for birds nesting around Chornobyl City and nuclear accident sites in Ukraine and Belarus. We tested if 
simultaneous exposure to elevated radioactive contamination and rising environmental temperatures impaired animals 
performance.

Materials and methods

Study animals and area

Barn swallows (Hirundo rustica Linnaeus, 1758) have become a model organism for eco-evolutionary research of responses 
to radioactive contamination around Chornobyl City, Ukraine [23–26]. Ukrainian barn swallows often nest in abandoned farm 
buildings (with no livestock), from spring to summer, and migrate for wintering in sub-Saharan Africa. Here we included data 
collected for 1091 individuals, captured between 25th May and 9th June 2008−2019, including 12 breeding seasons from 13 
study sites in Ukraine and Belarus (Fig 1) [23]. Birds were captured at study sites with mist nets, individually marked with bird 

Fig 1.  Radioactive contamination around Chornobyl (Ukraine). Study area and environmental contamination in northern Ukraine and south-eastern 
Belarus, including sites around Chornobyl and Kyiv cities (Ukraine). Radiation background map is modified from DeCort et al 1998 [27], under a CC BY 
license, with permission from Marc DeCort of the European Commission, original copyright 2015.

https://doi.org/10.1371/journal.pone.0329769.g001

https://doi.org/10.1371/journal.pone.0329769.g001
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rings at first capture and immediately phenotyped and released back to the capture area. Individuals of this species showed 
considerable philopatry, i.e., when found at a given site, they rarely moved to another location in the Chornobyl region. Gen-
erally, the maximum recorded breeding dispersal in other European populations was 750 m [28]. The study sites represent a 
gradient of radiation levels derived from radioactive nucleotides released from Chernobyl nuclear accident in 1984 [27]. Many 
of the study sites still have high levels of radioactive contamination (Fig 1). Access to study sites and handling of birds followed 
international regulations, ethical approval by the University of South Carolina Institutional Animal Care and Use Committee 
(assurance number: A3049-01), and permits from the authorities of the Chernobyl Exclusion Zone.

Bird body temperature

Core body temperature of barn swallows was measured in situ (with a precision of 0.1ºC) with a thermometer (TA804C) 
equipped with a thermocouple, by inserting the tip of the thermocouple probe 1.0 cm into the cloaca of the birds [29]. These 
measurements, conducted within 60s, provide consistent readings when repeated (intraclass correlation coefficient = 0.74), 
and provide reliable estimates of animal internal body temperature [29]. Body mass measured with a Pesola spring balance 
(with a precision of 0.1g) was recorded along with other morphological (including keel, tarsus and bill dimensions), behav-
ioral (including order of capture and tonic immobility) and phenological (day and hour of capture) data [23].

Environmental radioactive contamination

In order to relate radioactive contamination to animal body temperature we collected ionizing radiation data from the 
exact sites of capture of barn swallows. The level of environmental radioactive contamination was repeatedly measured 
at ground level using a hand-held dosimeter (Inspector, SE International, Inc., Summertown, TN, USA; for details see: 
[30]). Those measures showed high and significant repeatabilities among days, seasons and years (intraclass correlation 
coefficient > 0.89) when repeating measurements from the same sites [31]. The results also showed a strong correlation 
(Pearson’s product-moment = 0.70) with a large 137Cs deposition dataset from the European Union Joint Research Cen-
ter Radioactivity Environmental Monitoring project (Fig 1) [23,32]. Using data reported in [32], 137Cs activity levels at our 
study sites within the Chernobyl Exclusion Zone varied from <3 to >6000 kBq/m2 and is the primary source for all gamma 
radiation stemming from the Chernobyl disaster. 90Sr is also abundant in the region ranging from about 6–3300 kBq/m2 but 
being a pure beta emitter is only of concern if ingested. 241Am, and Pu isotopes (238Pu, 239Pu, 240Pu) can also be found but 
at much lower levels (241Am: 0.3–128 kBq/m2; Pu: 0.06–40 kBq/m2) and thus are unlikely to contribute significantly to dose 
rates.

Environmental weather conditions

To link weather conditions to animal body temperature we collected weather data predictions for the study sites, years and 
particular days, for minimum, maximum and mean daily air temperature and relative humidity, recorded 2 m above the 
ground. Additionally, to estimate general trends in those variables over longer periods of time (1981–2022) in the study 
areas, we collected monthly June values representative for Chornobyl City only. Minimum, maximum and mean values 
were obtained with native resolution of 0.5 x 0.625 latitude and longitude degrees, from the National Aeronautics and 
Space Administration (NASA), Langley Research Center (LaRC) Prediction of Worldwide Energy Resource (POWER), a 
project funded through the NASA Earth Science/Applied Science Program [11]. The data were obtained from the POWER 
Project’s Hourly 2.0.0 version on 20.10.2022 [33].

Statistics

To estimate long term trends in weather conditions (1981–2022) around Chornobyl City (Ukraine) we modeled the effect 
of year on June minimum, maximum and mean air temperature and relative humidity, with linear regression analysis. 
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We tested if the same trends, for the same weather predictors, are present in the shorter weather data set (2008–2019), 
restricted to our study period but including all study sites. Next, to reduce correlations among the six weather variables, 
and to reduce the number of predictors in further analyses, we applied rotated (varimax; on standardized and centered 
variables) principal component analysis, generating two principal components, referring to environmental temperature and 
relative humidity (in “psych” v. 2.2.9 R package).

To test if environmental predictors, environmental temperature, relative humidity and radioactive contamination, affect bird 
physiological performance, measured as body temperature, we applied mixed model analysis. Our analysis included random 
factors of: individual bird ID (to account for repeated measurements on the same individual; 129 birds had two or more mea-
sures), study site (to account for pseudo replication of multiple individuals from the same site), and year (to account for correlation 
among individual differences among years). We tested for differences between males and females (sex as fixed factor) and their 
differential response to environmental predictors (interactions between sex and weather variables and radioactive contamination), 
and included body mass as a continuous predictor of body temperature. We investigated nonlinear responses to environmen-
tal predictors by modeling their quadratic terms. Additionally, to test how radioactive contamination modulates bird response to 
temperature and humidity, we tested two-way interactions among continuous predictors of radioactive contamination and weather 
variables. Body temperature, mass and radioactive contamination were normalized (log transformed), standardized and centered 
prior to mixed model analysis (in “lme4” v. 1.1.29 and “lmerTest” v. 3.1.3 R packages) [34].

Results

Environmental contamination varied significantly among our study sites in northern Ukraine and south-east Belarus (vari-
ance = 3.034 µGy/h), from 0.02 to 8.5 µGy/h, with mean and median of 0.76 and 0.31 µGy/h, respectively (Fig 1). We 
showed a rise in environmental temperatures, both in the data from our study sites and 2008−2019 years (daily minimum: 
t = 2.05, p = 0.041, maximum: t = 7.03, p < 0.001, and mean values: t = 6.92, p < 0.001) and in the data from Chornobyl City for 
1981−2022 years (monthly June minimum: t = 1.30, p = 0.20, maximum: t = 3.19, p = 0.003, and mean temperatures: t = 2.82, 
p = 0.008). We did not detect time-trends in relative humidity (Fig 2a). Principal component analysis reduced six correlated 
weather variables (Pearson’s product moment correlations: −0.45–0.98) to two uncorrelated components, describing 92% of 
the cumulative variation in minimum, maximum and average daily environmental temperatures and relative humidity (Fig 2b).

Barn swallow body temperature [mean (min-max, variance) = 41.13 (37.3–43.7, 1.21) °C] was weakly but significantly 
correlated with body mass [mean = 18.81 (15.0–24.0, 2.10) g; r (95% CI) = 0.13 (0.08–0.19), t = 4.71, df = 1244, p < 0.001). 
The correlation was marginally stronger in males [mean = 18.26 (15.0–21.8, 1.17) g; r (95% CI) = 0.20 (0.13–0.28), 
t = 4.97, df = 585, p < 0.001] than in females [mean = 19.30 (15.2–24.0, 2.42) g; r (95% CI) = 0.11 (0.04–0.19), t = 2.78, 
df = 657, p = 0.006]. Body temperature did not differ markedly between males [mean = 41.15 (37.4–43.5, 1.25) °C] and 
females [mean = 41.11 (37.3–43.7, 1.19) °C; t = 0.58, p = 0.56].

Body temperature was higher in barn swallows captured in locations with higher levels of radioactive contamination 
(Fig 3; Table 1). Body temperature of barn swallows was also higher during days with higher air temperatures, and lower 
during days with higher relative humidity (with marginal quadratic effect of relative humidity; Table 1). Environmental 
effects of radioactive contamination and weather conditions were consistent when excluding records for the driest days 
(S1 File), and when including previously detected individual quality and phenology predictors of body temperature in barn 
swallows [23]. Additional analyses found significant interactions between radioactive contamination and environmental 
temperature, radioactive contamination and relative humidity, and between environmental temperature and relative humid-
ity, as predictors of birds body temperature (Fig 4; Table 2).

Discussion

Warming climate and degradation of natural habitats are the two main factors negatively impacting biodiversity globally 
[35,36]. June air temperatures in Chornobyl City (Ukraine) rose by an average of 1.75°C, from around 18.1 to 19.8°C 
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during the 31 years between 1981–1990 and 2012–2021. Temperatures in our study sites in northern Ukraine and 
south-eastern Belarus (Fig 1) also rose, by an average of 0.5°C, from around 16.1 to 16.6°C in only seven years (between 
2008–2012 and 2015–2019; Fig 2). Data collected during this period from more than 1000 wild barn swallows showed 
that rising environmental temperatures and contamination from the nuclear accident simultaneously contributed to the 
elevation of internal body temperature of birds (Figs 3 and 4). Variation in air temperatures between 17–18 and 19–20°C 
resulted in an increase in body temperature of around 0.8°C (by 1.95%), from 41.0 to 41.8°C. Simultaneously, variation in 
relative air humidity had limited effect on bird body temperatures. An increase in humidity from 40–60–70–90% coincided 
with a decrease in body temperature of only 0.1°C (by 0.24%, from 41.5 to 41.4°C). In contrast, even relatively small 
increases in chronic exposure to ionizing radiation, from 0.02 to 2.9 μGy/h (compared to <0.02 μGy/h prior to the accident, 
and ≥30 μGy/h in some contaminated locations around Chernobyl [37,38], or to an acute exposure from a single x-ray 
scans of human chest of 900–3400 μGy/scan) [39], resulted in an increase in body temperature by an average 0.6°C 
(1.47%), from 40.9 to 41.5°C (Table 1).

The observed levels of air temperatures in our study area (average ~18–20ºC) are below mortality thresholds usually 
observed, or assumed, for bird species (~46ºC) [4]. Presumably, therefore, barn swallows are still not at risk of mass 
mortality in Chornobyl, similar to those observed in hotter and more tropical regions and caused by extreme heat waves 

Fig 2.  Climatic variation around Chornobyl (Ukraine). a) Trends and variation in climatic conditions around Chornobyl City (upper row) and in exact 
sampling sites and study years (lower row; from NASA/POWER CERES/MERRA2 projections). Statistics for significant trends in environmental tem-
peratures are presented. b) Standardized loadings (positive – black, negative – gray) for two principal components, from principal component analysis of 
daily climatic variables (minimum, maximum, mean) for exact study sites, are presented along with percentage of explained variance.

https://doi.org/10.1371/journal.pone.0329769.g002

https://doi.org/10.1371/journal.pone.0329769.g002
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Fig. 3.  Birds body temperature around Chornobyl (Ukraine). Effects of body mass, environmental radioactive contamination from the Chernobyl 
accident and weather conditions on body temperature of barn swallows (Hirundo rustica). Back transformed predicted values (95%CI) and standardized 
effects are derived from the statistical model accounting for variation among study sites, years and individuals (Table 1). Mean environmental tempera-
tures and relative humidity are back transformed from principal components (Fig 1; for simplicity only means are presented).

https://doi.org/10.1371/journal.pone.0329769.g003

Table 1.  Responses of birds body temperature to radioactive contamination and climate around Chornobyl (Ukraine).

est. (s.e.) df t p

Intercept −0.12 (0.20) 12.35 −0.60 0.56

sex (male) 0.07 (0.05) 1006 1.43 0.15

body mass 0.04 (0.03) 1208 1.35 0.18

radioactive cont. 0.26 (0.05) 8.09 5.18 0.0008

env. temperature 0.62 (0.04) 335 15.55 <.0001

rel. humidity −0.34 (0.03) 484 −10.38 <.0001

rel. humidity^2 −0.10 (0.02) 607 −4.95 <.0001

body mass * sex 0.14 (0.05) 1207 2.84 0.005

Changes in individually measured absolute (log
10

 transformed) barn swallow (Hirundo rustica) body temperature (°C) resulting from environmental radio-
active contamination (µGy/h) from the Chernobyl accident, daily environmental temperature (°C) and relative humidity (%), and body mass (g), account-
ing for variation among individuals, sites and years. Variance (s.d.) of random factors: individual ID = 0.03 (0.17), study site = 0.03 (0.17), study year = 0.38 
(0.62) and residual variance = 0.54 (0.73,) for 1246 observations, 1091 individuals, 13 sites and 12 years. Vif < 1.65.

https://doi.org/10.1371/journal.pone.0329769.t001

https://doi.org/10.1371/journal.pone.0329769.g003
https://doi.org/10.1371/journal.pone.0329769.t001
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[7]. Nevertheless, we found here that birds body temperature significantly increased with increasing, over four decades, 
ambient temperatures (Table 1). This novel results highlight that even mildly rising air temperatures can affect bird ther-
moregulation [40]. Our individual body temperature data suggested that barn swallows either up-regulate their internal 
temperatures to diminish water loss [41], or are unable to dissipate heat effectively, thus they suffer overheating when 
air temperatures rise (Fig 3). Both these non-mutually exclusive mechanisms may pose costs for individuals inhabiting 
contaminated habitats. Energetic maintenance costs, energy that must be spent for basic life functions by an endothermic 

Fig. 4.  Synergic effects of contamination and climate on body temperature around Chornobyl (Ukraine). Interactive effects of environmental 
radioactive contamination from the Chernobyl accident and weather conditions on body temperature of barn swallows (Hirundo rustica). Back- 
transformed predicted values and standardized effects are derived from a statistical model accounting for variation among study sites, year and individ-
uals, and estimated interactions. Mean environmental temperatures and relative humidity are back transformed from principal components (Fig 1; for 
simplicity only means are presented).

https://doi.org/10.1371/journal.pone.0329769.g004

Table 2.  Interactive responses of birds body temperature to radioactive contamination and climate around Chornobyl (Ukraine).

est. (s.e.) df t p

intercept −0.14 (0.20) 12.86 −0.69 0.50

sex (male) 0.07 (0.05) 1025 1.57 0.12

body mass 0.05 (0.03) 1213 1.63 0.10

radioactive cont. 0.22 (0.05) 11.73 4.12 0.0015

env. temperature 0.60 (0.04) 409 15.00 <.0001

rel. humidity −0.36 (0.04) 289 −9.72 <.0001

rel. humidity^2 −0.15 (0.02) 832 −6.54 <.0001

body mass *sex 0.13 (0.05) 1207 2.69 0.007

rad.cont. *env.temp. −0.13 (0.03) 1115 −4.66 <.0001

rad.cont. *rel.hum. 0.16 (0.03) 1113 4.88 <.0001

env.temp. *rel.hum. 0.07 (0.03) 352 2.03 0.043

Changes in individually measured absolute (log
10

 transformed) barn swallow (Hirundo rustica) body temperature (°C) resulting from environmental radio-
active contamination (µGy/h) from Chernobyl accident, daily environmental temperature (°C) and relative humidity (%), and body mass (g), accounting 
for variation among individuals, sites and years. Interactions between climatic conditions and radioactive contamination predicting barn swallows body 
temperature are presented. Variance (s.d.) of random factors: individual ID = 0.04 (0.19), site = 0.03 (0.17), year = 0.40 (0.63), residual = 0.52 (0.72), for 
1246 observations, 1091 individuals, 13 sites and 12 years. Vif < 1.69.

https://doi.org/10.1371/journal.pone.0329769.t002

https://doi.org/10.1371/journal.pone.0329769.g004
https://doi.org/10.1371/journal.pone.0329769.t002
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animal (i.e., resting/basal metabolic rate), scale positively with animal body temperature [42,43]. Consequently, animals 
with higher body temperatures, such as birds exposed to radioactive contamination (Table 1), might invest more into 
foraging to cover likely elevated daily energetic expenses [44]. Altering the level of metabolic costs can have subsequent 
consequences for fitness and population dynamics in endothermic animals [45,46], such as in the barn swallows studied 
here. Elevated metabolism may promote overall faster energy turnover the amount of energy to be allocated to perfor-
mance [47]. But, high maintenance costs may constrain energy allocable to important functions, such as between thermo-
regulation, mobility and reproduction [48,49], and increase ingestion rate of environmental contaminants. Consequent of 
contamination, chronic overheating may lead to physiological challenges, such as malfunctions of the neural system (also 
evident in human [49]) resulting in elevated oxidative stress, depleting fertility [50]. Determining the mechanisms (e.g., 
oxidative stress, metabolic costs) underlying elevated body temperatures will be important for predicting the sustainability 
of animal populations in the face of global warming.

The observed rise of barn swallow body temperature across an increasing gradient of radioactive contamination in 
northern Ukraine and south-eastern Belarus (Table 1) most likely relates to negative effects of ionizing radiation on cellular 
and physiological homeostasis [18,21]. Around Chornobyl, after the explosion and fire at the nuclear reactor of the power 
plant in 1986, a large amount of diverse nuclear radioisotopes was released, mainly into the surrounding environment but 
some were also distributed across the European continent that still persist in the ecosystems [51–53]. The main long-
term isotopes of that accident, cesium (137Cs), plutonium (239Pu) and strontium (90S) with half-lives of ~30, ~ 24 000 and 
~29 years [54,55], entered the food chain, being ingested with food and water by animals [37]. Consequently, exposure 
to radionuclides affected animal biology, including reduced reproduction [56,57] and increased frequency of aberrations, 
such as cataract [30,56], among other effects [25,31,38,56,57]. Exposure to chronic low-dose radioactive contamination 
may cause febrile responses similar to those observed after intoxication by chemicals [58], or from effects mediated by 
higher infection rates on host organisms (i.e., immune response). Whichever is the mechanism behind observed body 
temperature increase (Tables 1 and 2), it poses a risk that animals exposed to high contamination get closer to a thresh-
olds of performance lose, or to the limits of thermoregulation, above which persistence of population is at risk do to fitness 
decline of individual birds.

Since barn swallows body temperatures in our data increased with both radioactive contamination and rising tempera-
tures (Table 1), as simultaneously showed here for the first time, exposure to increased radioactive contamination may 
potentially increase animal sensitivity to the negative effects emerging from global warming (Fig 4). However, the effects 
are less prominent when birds already have high body temperature. Accordingly, in low ambient temperatures, body 
temperature rises faster due to radiation, than under high ambient temperatures [interactive effect between radioactive 
contamination and environmental temperature: β = −0.13 (0.03), df = 1115, p < 0.0001; Table 2]. In other words, the relation 
between body and ambient temperatures is stronger (steeper slope) when animals are exposed to low radioactive con-
tamination, when compared to animals inhabiting high radiation locations (left panel: Fig 4). This interactive result suggest 
that, while the effects of environmental temperature (t = 15.55, df = 335, p < 0.0001) and radioactive contamination (t = 5.18, 
df = 8.09, p = 0.0008) are additive (operate in the same direction; Table 1), animals might be reaching their physiological 
limits (ceiling), or thermoregulation mechanisms may be compromised in highly contaminated habitats. As a result, the 
normal mechanisms expressed by animals when exposed to increased ambient temperatures can not be applied any 
more when simultaneously exposed to both environmental stressors (e.g., due to oxidative stress or elevated metabolic 
costs) [25,59]. Alternatively, animals might be more sensitive to radiation in low ambient temperatures, suggesting that 
animals foraging more in a cold weather suffer more exposure from radiation ingested with food or due to the increased 
behavioral activity in contaminated areas. While the first mechanisms could signal synergy of arising risk of radiation and 
climate change, the second suggests that, to some extend, animals can buffer themselves from such cumulative risk, 
by reducing activity in hot weather. Even doe the synergy between negative effect of radiation and ambient temperature 
seems to decrease with increasing levels of both factors (as indicated by negative interaction; Table 2), birds exposed to 
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increased radiation always suffer more from overheating, and perhaps dehydration during warm weather. Therefore, it can 
be hypothesized that birds simultaneously exposed to increased radiation and climate warming might suffer greater fitness 
losses, which could at least in part explain the observations that barn swallows frequently abandon their colonies around 
Chornobyl City [25,38,60,61].

Conclusions

Our results show that increased radioactive contamination and air temperatures cause up-regulation of birds body tem-
peratures, potentially leading to hyperthermia. While we could not elucidate specific mechanisms responsible for hyper-
thermia it might have additive effects on animal performance when simultaneously exposed to radiation and warming 
climate. Damaging effects could arise from increased oxidative stress induced from ionizing radiation and high tempera-
tures. Another possible mechanism includes missed opportunities by birds avoiding activity during warm weather and 
in contaminated habitats (where additionally birds food abundance might be lower) [62,63]. Growing evidence suggests 
that behavioral changes, such as decreased activity for energy acquisition needed for reproduction can incur far-reaching 
consequences for fitness [64]. Avoiding foraging flights, supported by high metabolic work [65] that unavoidably increases 
physiological heat production, could be a strategy during hot days in already mildly hyperthermic animals in contaminated 
areas. We hypothesize that habitat degradation and contamination can impair resilience to global change, adding to a 
growing number of negative consequences of environmental change, such as seasonality mismatching in bird phenology 
[66]. The correlative nature of our study limits inferring mechanisms, to be approached in future experiments (e.g., in con-
trolled exposure studies). Envisioning appropriate mitigation actions (i.e., restitution of habitats and its mosaic, buffering 
heat waves) will be essential for safeguarding wildlife exposed to multiple environmental stressors, coincidentally safe-
guarding human well-being as well [67].

Supporting information

S1 File.  Responses of birds body temperature to radioactive contamination and climate around Chornobyl, 
excluding records with low daily relative humidity. Barn swallow (Hirundo rustica) body temperature as predicted by 
body mass, environmental radioactive contamination from Chernobyl accident, daily environmental temperature and rela-
tive humidity, while accounting for variation among individuals, sites and years.
(PDF)
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(PDF)
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